

Answer on Question 71466, Physics, Mechanics, Relativity

Question:

A car weighing 9800 N is moving with a speed of 50 km/h . On the application of the brakes it comes to rest after travelling a distance of 60 m . Calculate the average retarding force.

Solution:

We can find the average retarding force from the Newton's Second Law of Motion:

$$F_{avg} = ma,$$

here, F_{avg} is the average retarding force acting on the car, m is the mass of the car, a is the acceleration of the car.

We can find acceleration from the kinematic equation:

$$v^2 = v_0^2 + 2ad,$$

here, v_0 is the initial velocity of the car, $v = 0$ is the final velocity of the car (when it comes to rest), a is the acceleration of the car and d is the distance travelling after application of the brakes.

Then, we get:

$$a = -\frac{v_0^2}{2d}.$$

Let's first convert km/h to m/s :

$$v_0 = 50 \frac{\text{km}}{\text{h}} \cdot \frac{1000 \text{ m}}{1 \text{ km}} \cdot \frac{1 \text{ h}}{3600 \text{ s}} = 13.9 \frac{\text{m}}{\text{s}}.$$

Then, we can substitute v_0 into formula for acceleration and calculate it:

$$a = -\frac{v_0^2}{2d} = -\frac{\left(13.9 \frac{\text{m}}{\text{s}}\right)^2}{2 \cdot 60 \text{ m}} = -1.61 \frac{\text{m}}{\text{s}^2}.$$

The sign minus indicates that the car decelerates.

Also, we can find the mass of the car from the definition of the weight:

$$W = mg,$$

$$m = \frac{W}{g} = \frac{9800 \text{ N}}{9.8 \frac{\text{m}}{\text{s}^2}} = 1000 \text{ kg.}$$

Finally, we can find the average retarding force:

$$F_{avg} = ma = 1000 \text{ kg} \cdot \left(-1.61 \frac{\text{m}}{\text{s}^2} \right) = -1610 \text{ N.}$$

The sign minus indicates that the average retarding force directed in the opposite direction to the motion of the car.

Answer:

$$F_{avg} = 1610 \text{ N.}$$

Answer provided by <https://www.AssignmentExpert.com>