Answer on Question \#71422 Physics / Electromagnetism

Two charges A and B of $Q=5 u C$ each separated by a distance of $6 \mathrm{~cm} . C$ is midpoint of the line joining A and B. A charge Q of $-5 u C$ is shot perpendicular to the line joining A and B through C with kinetic energy of $K E=0.06 \mathrm{~J}$. The charge Q comes to rest at a point D . The distance CD is

Solution:

The potential of electric field at the points and D

$$
\begin{aligned}
V_{c} & =k \frac{Q}{r_{A C}}+k \frac{Q}{r_{B C}} \\
V_{D} & =k \frac{Q}{r_{A D}}+k \frac{Q}{r_{B D}}
\end{aligned}
$$

The change of kinetic energy is equal of work done

$$
\begin{gathered}
K E=Q\left(V_{c}-V_{D}\right) \\
K E=k Q^{2}\left(\frac{1}{r_{A C}}+\frac{1}{r_{B C}}-\frac{1}{r_{A D}}-\frac{1}{r_{B D}}\right) \\
r_{A C}=r_{B C}=\frac{0.06 \mathrm{~m}}{2} 0.03 \mathrm{~m} \\
r_{A D}=r_{B D}
\end{gathered}
$$

Thus

$$
\begin{gathered}
0.06=9 \times 10^{9} \times\left(5 \times 10^{-6}\right)^{2}\left(\frac{2}{0.03}-\frac{2}{r_{A D}}\right) \\
r_{A D}=0.03012 \mathrm{~m}
\end{gathered}
$$

Finally

$$
C D=\sqrt{r_{A D}^{2}-r_{A C}^{2}}=0.0027 \mathrm{~m}=2.7 \mathrm{~mm}
$$

Answer: 2.7 mm .
Answer provided by https://www.AssignmentExpert.com

