Answer on Question \#71361, Physics / Mechanics

A block of masses m_{A} is on a plane inclined at an angle θ with the horizontal. It is attached to another mass m_{B} by means of string that passes over a pulley at the top of the incline. For $m_{A}=8 \mathrm{~kg}$, $m_{B}=5 \mathrm{~kg}, \theta=20^{\circ}$, and the coefficient of kinetic friction between m_{A} and the plane is 0.3 . Calculate the (a) acceleration of the masses and (b) the tension in the string when the system is moving.

Solution:

Given:

$$
\begin{aligned}
& m_{A}=m=8 \mathrm{~kg}, \\
& m_{B}=M=5 \mathrm{~kg}, \\
& \theta=20^{\circ}, \\
& \mu_{k}=0.3
\end{aligned}
$$

First, let's determine the net force acting on each of the masses. Applying Newton's Second Law we get:

$$
\begin{array}{ll}
\text { for mass } m_{B}: & m_{B} g-T=m_{B} a \\
\text { for mass } m_{A}: & T-m_{A} g \sin \theta-\mu_{k} N=m_{A} a
\end{array}
$$

Adding these two equations together, we find that

$$
\begin{gathered}
m_{B} g-T+T-m g \sin \theta-\mu_{k} N=m_{B} a+m a \\
m_{B} g-m_{A} g \sin \theta-\mu_{k} N=a\left(m_{B}+m_{A}\right)
\end{gathered}
$$

The friction force

$$
\mu_{k} N=\mu_{k} m_{A} g \cos \theta
$$

Thus,

$$
\begin{gathered}
a=\frac{g\left(m_{B}-m_{A} \sin \theta-\mu_{k} m_{A} \cos \theta\right)}{\left(m_{B}+m_{A}\right)} \\
a=\frac{9.81 \cdot\left(5-8 \cdot \sin 20^{\circ}-0.3 \cdot 8 \cdot \cos 20^{\circ}\right)}{(8+5)}=0.00647 \approx 0.0065 \mathrm{~m} / \mathrm{s}^{2}
\end{gathered}
$$

The tension is

$$
T=m_{B}(g-a)=5 \cdot(9.81-0.0065)=49.02 \mathrm{~N}
$$

Answer. a) $a=0.0065 \mathrm{~m} / \mathrm{s}^{2}$; b) $T=49.02 \mathrm{~N}$.
Answer provided by www.AssignmentExpert.com

