Answer on Question \#71182, Physics / Optics

Question. The critical angle for the material of a prism is 45° and its refracting angle is 30°. A monochromatic ray goes out perpendicular to the surface of emergence from the prism. Then the angle of incidence on the prism will be

Given. $\alpha=30^{\circ} ; \theta_{c}=45^{\circ}$.
Find. β.

Solution.

Using the equation for the critical angle

$$
\theta_{c}=\arcsin \left(\frac{n_{2}}{n_{1}}\right)
$$

we get

$$
45^{\circ}=\arcsin \left(\frac{1}{n_{1}}\right) \rightarrow n_{1}=\frac{1}{\sin 45^{\circ}}=\sqrt{2} .
$$

From the figure

$$
\gamma=\alpha
$$

So

$$
\begin{gathered}
\frac{\sin \beta}{\sin \gamma}=\frac{n_{1}}{n_{2}} \rightarrow \sin \beta=\frac{n_{1} \cdot \sin \gamma}{n_{2}} \rightarrow \\
\beta=\arcsin \left(\frac{n_{1} \cdot \sin \gamma}{n_{2}}\right)=\arcsin \left(\frac{\sqrt{2} \cdot \sin 30^{\circ}}{1}\right)=\arcsin \left(\frac{\sqrt{2}}{2}\right) \rightarrow \\
\beta=45^{\circ}
\end{gathered}
$$

Answer. $\beta=45^{\circ}$.

