Answer on Question \#71153, Physics / Mechanics | Relativity

Question. A uniform toy of constant density is made by mounting a cone of height h and radius r on a hemisphere of radius r. Find ratio h / r if center of mass of toy is to toy is to lie at the center of common base.

Solution.

According to the formula

$$
Z_{C}=\frac{m_{1} \cdot Z_{C_{1}}+m_{2} \cdot Z_{C_{2}}}{m_{1}+m_{2}}
$$

where m_{1} - the mass of a cone; m_{2} - the mass of a hemisphere; $Z_{C_{1}}$ - the center of mass of a cone; $Z_{C_{2}}$ - the center of mass of a hemisphere. Hence

$$
Z_{C}=\frac{m_{1} \cdot Z_{C_{1}}+m_{2} \cdot Z_{C_{2}}}{m_{1}+m_{2}}=\frac{\frac{1}{3} \pi r^{2} h \rho \cdot \frac{1}{4} h-\frac{2}{3} \pi r^{3} \rho \cdot \frac{3}{8} r}{\frac{1}{3} \pi r^{2} h \rho+\frac{2}{3} \pi r^{3} \rho}=\frac{\frac{1}{3} h \cdot \frac{1}{4} h-\frac{1}{4} r^{2}}{\frac{1}{3} h+\frac{2}{3} r}
$$

Since $Z_{C}=0$ then

$$
0=\frac{\frac{1}{3} h \cdot \frac{1}{4} h-\frac{1}{4} r^{2}}{\frac{1}{3} h+\frac{2}{3} r} \rightarrow \frac{1}{3} h \cdot \frac{1}{4} h-\frac{1}{4} r^{2}=0 \quad \rightarrow \quad \frac{h}{r}=\sqrt{3}
$$

Answer. $\frac{h}{r}=\sqrt{3}$.

