Answer on Question 71070, Physics, Other

Question:

A 2Ω resistor is connected in a series with a 20.0 V battery and a three-branch parallel network with branches whose resistance are 8Ω each. Ignoring the battery's internal resistance, what is the current in the battery?

Solution:

Let's first find the equivalent resistance of the three-branch parallel network:

$$
\begin{gathered}
\frac{1}{R_{\text {eq parallel }}}=\frac{1}{R_{2}}+\frac{1}{R_{3}}+\frac{1}{R_{4}}=\frac{1}{8 \Omega}+\frac{1}{8 \Omega}+\frac{1}{8 \Omega}=\frac{3}{8} \Omega . \\
R_{\text {eq parallel }}=\frac{8}{3} \Omega .
\end{gathered}
$$

This three-branch parallel network of resistors is connected in series with the 2.0 -ohm resistor. So, the equivalent resistance of the circuit is equal:

$$
R_{e q}=R_{1}+R_{\text {eq parallel }}=2 \Omega+\frac{8}{3} \Omega=\frac{14}{3} \Omega .
$$

Finally, we can find the current in the battery from the Ohm's law:

$$
I=\frac{V}{R_{e q}}=\frac{20 \mathrm{~V}}{\frac{14}{3} \Omega}=4.28 \mathrm{~A}
$$

Answer:

$I=4.28 \mathrm{~A}$.
Answer provided by https://www.AssignmentExpert.com

