

A net force with magnitude $(5.00 \text{ N/m}^2) \times 2$ and directed at a constant angle of 31.0° with the $+x$ -axis acts on an object of mass 0.250 kg as the object moves parallel to the x -axis. How fast is the object moving at $x = 1.50 \text{ m}$ if it has a speed of 4.00 m/s at $x = 1.00 \text{ m}$?

The horizontal component of the force is the component that will cause the object to accelerate, and it has a magnitude of

$$F_x = F \cos(31^\circ) = 0.86F$$

Using second Newton's law:

$$F_x = ma \rightarrow a = \frac{0.86F}{m} = \frac{0.86 * 5N}{0.25kg} = 17.2 \text{ m/s}^2$$

At time t object's position is:

$$x = x_0 + \frac{v^2 - v_0^2}{2a}$$

Assuming that $x = 1 \text{ m}$ is a starting point for object with $v_0 = 4 \text{ m/s}$:

$$v^2 = v_0^2 + 2(x - x_0)a$$

$$v = \sqrt{v_0^2 + 2(x - x_0)a}$$

$$v = \sqrt{(4 \text{ m/s})^2 + 2 * (1.5 \text{ m} - 1 \text{ m}) * 17.2 \text{ m/s}^2} = 5.76 \text{ m/s}$$

Answer: $v = 5.76 \text{ m/s}$