Answer on Question \#71036, Physics / Optics

An installed surveillance in Camella St. uses a concave mirror whose focal length is 6.24 m . A crime scene was recorded where the suspect stabbed a man walking on the street. The suspect image distance from the surveillance was 11.3 m . The height of the suspect's image is 0.9 m . Make a ray diagram and a sketch of the actual scene

Solution:

$P F$ is the focal length of concave mirror, $P F=f=6.24 \mathrm{~m}$
$P A^{\prime}$ is image distance, $P A^{\prime}=d_{i}=11.3 \mathrm{~m}$
$\mathrm{PO}=2 \mathrm{f}=12.48 \mathrm{~m}$
PA is the object distance, $P A=d_{0}$
$A B$ is the height of the object, $A B=H$
$A^{\prime} B^{\prime}$ is the height of the image, $A B=h$
The mirror formula in this case:
$\frac{1}{d_{0}}+\frac{1}{d_{i}}=\frac{1}{f}(1)$
Of (1) $\Rightarrow \frac{1}{\mathrm{~d}_{0}}=\frac{1}{\mathrm{f}}-\frac{1}{\mathrm{~d}_{\mathrm{i}}}(2)$
Of (2) $\Rightarrow \frac{1}{\mathrm{~d}_{0}}=\frac{\mathrm{d}_{\mathrm{i}}-\mathrm{f}}{\mathrm{fd}_{\mathrm{i}}}(3)$
Of (3) $\Rightarrow \mathrm{d}_{0}=\frac{\mathrm{fd}_{\mathrm{i}}}{\mathrm{d}_{\mathrm{i}}-\mathrm{f}}(4)$
Of (4) $\Rightarrow d_{0}=13.94 \mathrm{~m}$
Magnification of mirror: $k=\frac{d_{0}}{d_{i}}=\frac{H}{h}(5)$
Of (5) $\Rightarrow \mathrm{H}=\frac{\mathrm{d}_{0}}{\mathrm{~d}_{\mathrm{i}}} \mathrm{h}(6)$
Of (6) $\Rightarrow \mathrm{H}=1.11 \mathrm{~m}$

