Answer on Question \#71023, Physics / Molecular Physics | Thermodynamics

$0.05 \mathrm{~m}^{3}$ of a gas at 6.9 bar expands reversibly in a cylinder behind a piston according to the law $\mathrm{PV}^{1.2}=$ constant until volume is $0.08 \mathrm{~m}^{3}$. Calculate the work done by the gas and sketch the process on p -v diagram.

Solution:

Work = shaded area
Since,

$$
p_{1} V_{1}^{1.2}=p_{2} V_{2}^{1.2},
$$

Therefore

$$
p_{2}=p_{1}\left(\frac{V_{1}}{V_{2}}\right)^{1.2}=6.9 \times\left(\frac{0.05}{0.08}\right)^{1.2}=3.92559 \mathrm{bar}
$$

The work is

$$
\begin{gathered}
W=\frac{p_{2} V_{2}-p_{1} V_{1}}{1-n} \\
W=\frac{3.9256 \times 0.08-6.9 \times 0.05}{1-1.2} \times 10^{5}=15476 \mathrm{~J} \approx 15480 \mathrm{~J}
\end{gathered}
$$

Answer: 15480 J
Answer provided by https://www.AssignmentExpert.com

