Answer on Question \#71020, Physics / Molecular Physics | Thermodynamics A mass of gas at an initial pressure of 28 bar and with an internal energy of 1500 kJ , is contained in a well-insulated cylinder of volume 0.06 m 3 . The gas is allowed to expand behind a piston until its internal energy is 1400 kJ ; the law of expansion is $\mathrm{PV}^{2}=$ Constant. Calculate

1. Work done;
2. The final volume;
3. The final pressure;
4. Draw P-V diagram.

Solution:

1) As there is no heat transfer in the system: $A=\Delta U=140-1500=-100 \mathrm{~kJ}$
2) $A=\int p d V=\left[p V^{2}=C\right]=-C \int \frac{1}{V^{2}} d V=C\left(\frac{1}{V_{2}}-\frac{1}{V_{1}}\right)=p_{1} V_{1}^{2}\left(\frac{1}{V_{2}}-\frac{1}{V_{1}}\right)=-100 k J$

As we know, $V_{1}=0.06 m^{3}, p_{1}=28$ bar, then $\boldsymbol{V}_{2}=\mathbf{0} .148 \boldsymbol{m}^{3}$
3) $p_{2}=\frac{p_{1} V_{1}^{2}}{V_{2}^{2}}=28 * \frac{0.06^{2}}{0.148^{2}}=4.6 \mathrm{bar}$
4)

Answer provided by https://www.AssignmentExpert.com

