Answer on Question \#71016, Physics / Mechanics | Relativity |

Question

The initial velocity of a car ($\mathrm{m}=1000 . \mathrm{kg}$) moving along a straight, horizontal road equals $72 \mathrm{~km} / \mathrm{h}$. What minimal time and distance are needed to stop the car if the static friction coefficient between the tires and the road equals 0.50 ?

Solution

$$
\begin{gathered}
m=1000 \mathrm{~kg} \\
v_{0}=72 \mathrm{~km} / \mathrm{h}=20 \mathrm{~m} / \mathrm{s} \\
\mu=0.5
\end{gathered}
$$

Let us write Second Newton's Law for the car

$$
F_{\text {friction }}=m a
$$

Friction force

$$
F_{\text {friction }}=\mu m g .
$$

So, deceleration is $a=\mu g=5 \mathrm{~ms}^{-2}$.
Time needed to stop the car can be found from

$$
t=\frac{v-v_{0}}{a}=\frac{0-20}{-5}=4 \mathrm{~s} .
$$

Stopping distance is

$$
S=\frac{v^{2}-v_{0}^{2}}{2 a}=\frac{0-400}{2 \cdot(-5)}=40 \mathrm{~m}
$$

Answer: 4s; 40 m .
Answer provided by https://www.AssignmentExpert.com

