

Question. A fluid at **0.7 bar** occupying **0.09 m^3** is compressed reversibly to a pressure of **3.5 bar** according to law $pV^n = \text{constant}$. The fluid is then heated reversibly at constant volume until the pressure is **4 bar**; the specific volume is then **$0.05 \text{ m}^3/\text{kg}$** . A reversible expansion according to a law $pV^2 = \text{constant}$ restores the fluid to its initial state. Sketch the cycle to a $p - V$ diagram and calculate:

- The mass of fluid present (THIS is the one I cannot seem to figure out.. basics be damned).
- the value of n in the first process.
- the net work of the cycle.

Given.

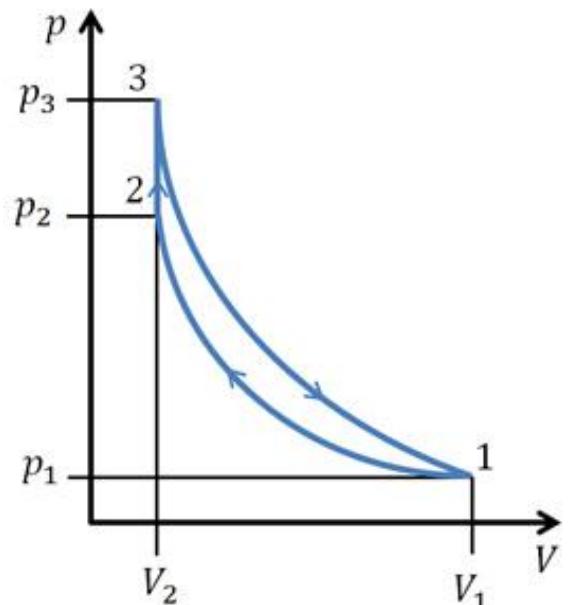
$$p_1 = 0.7 \text{ bar} = 70000 \text{ Pa}, V_1 = 0.09 \text{ m}^3, pV^n = \text{constant};$$

$$p_2 = 3.5 \text{ bar} = 350000 \text{ Pa};$$

$$p_3 = 4 \text{ bar} = 400000 \text{ Pa};$$

$$V_2 = V_3;$$

$$pV^2 = \text{constant};$$


$$\nu = 0.05 \text{ m}^3/\text{kg}.$$

Find.

$$m, n, A-?$$

Solution.

i) For 1 – 2

$$p_1 V_1^n = p_2 V_2^n. \quad (1)$$

Since $V_2 = V_3$ then for 3 – 1 we have

$$p_3 V_3^2 = p_3 V_2^2 = p_1 V_1^2 \rightarrow V_2 = V_3 = V_1 \sqrt{\frac{p_1}{p_3}} = 0.09 \sqrt{\frac{0.7}{4}} = 0.0376 \text{ m}^3.$$

So

$$m = \frac{V_3}{\nu} = \frac{0.0376}{0.05} = 0.753 \text{ kg}.$$

ii) From (1)

$$\frac{p_1}{p_2} = \left(\frac{V_2}{V_1}\right)^n \rightarrow \ln\left(\frac{p_1}{p_2}\right) = \ln\left(\frac{V_2}{V_1}\right)^n \rightarrow \ln\left(\frac{p_1}{p_2}\right) = n \ln \frac{V_2}{V_1} \rightarrow n = \frac{\ln\left(\frac{p_1}{p_2}\right)}{\ln \frac{V_2}{V_1}} = \frac{\ln \frac{0.7}{3.5}}{\ln \frac{0.0376}{0.09}} = \textcolor{red}{1.84}.$$

iii) The net work of the cycle

$$A = A_{1-2} + A_{2-3} + A_{3-1}$$

$$A_{1-2} = \int_{V_1}^{V_2} p dV = \int_{V_1}^{V_2} \frac{p_1 V_1^{1.84}}{V^{1.84}} dV = p_1 V_1^{1.84} \left[\frac{1}{1.84} V^{0.84} \right]_{0.09}^{0.0376} = 70000 \cdot 0.09^{1.84} \cdot \frac{V^{-1.84+1}}{-1.84+1} \Big|_{0.09}^{0.0376} =$$

$$= \frac{833.5}{-0.84} \cdot \left(\frac{1}{V^{0.84}} \Big|_{0.09}^{0.0376} \right) = \frac{833.5}{-0.84} \cdot \left(\frac{1}{0.0376^{0.84}} - \frac{1}{0.09^{0.84}} \right) \approx -8108 J.$$

$$A_{2-3} = \int_{V_2}^{V_3} p dV = 0.$$

$$A_{3-1} = \int_{V_3}^{V_1} p dV = \int_{V_3}^{V_1} \frac{p_1 V_1^2}{V^2} dV = p_1 V_1^2 \left[-\frac{1}{V} \right]_{0.0376}^{0.09} = 70000 \cdot 0.09^2 \cdot \frac{V^{-2+1}}{-2+1} \Big|_{0.0376}^{0.09} =$$

$$= \frac{567}{-1} \cdot \left(\frac{1}{V} \Big|_{0.0376}^{0.09} \right) = \frac{567}{-1} \cdot \left(\frac{1}{0.09} - \frac{1}{0.0376} \right) \approx 8780 J.$$

Finally

$$A = -8108 + 0 + 8780 = \textcolor{red}{672} J.$$

Answer. $m = 0.753 \text{ kg}$; $n = 1.84$; $A = 672 \text{ J}$.

Answer provided by <https://www.AssignmentExpert.com>