Question \#70933, Physics/Mechanics|Relativity
A plane is releasing a bomb while flying with $720 \mathrm{~km} / \mathrm{h}$ constant velocity. if the altitude of the plane is 980 m . find its position due to initial position when the bomb strikes to the ground. take $g=10 \mathrm{~m} / \mathrm{s}^{\wedge} 2$

Solution:
The time between a bomb released and the bomb strikes can be determined as:

$$
t=\sqrt{\frac{2 h}{g}}=\sqrt{\frac{2 \cdot 980 m}{10 m / s^{2}}}=14 s
$$

The horizontal velocity will be constant all the time before the bomb strike. Thus, it will fly:

$$
l=v_{0} \cdot t=200 \mathrm{~m} / \mathrm{s} \cdot 14 \mathrm{~s}=2800 \mathrm{~m}
$$

The bomb will fly in a horizontal direction 2800 meters.

Answer provided by https://www.AssignmentExpert.com

