Answer on Question \# 70913, Physics / Othe

Question Mars has a mass of $6.42 \cdot 10^{23}$ kilograms and a radius of 3397 kilometers. An astronaut standing on the surface of mars drops a hammer from a height of 1.55 meters. How long does it take the hammer to reach the ground?

Solution Let us find acceleration of free fall at Mars at its surface.

$$
\begin{gathered}
F=G \frac{M_{m} m}{R^{2}} \\
g=G \frac{M_{m}}{R^{2}}=6.67 \cdot 10^{-11} \frac{6.24 \cdot 10^{23}}{\left(3397 \cdot 10^{3}\right)^{2}} \approx 3.8 \mathrm{~m} / \mathrm{s}^{2}
\end{gathered}
$$

Now we can find time of free fall from $s=1.55 \mathrm{~m}$:

$$
\begin{aligned}
& s=g t^{2} / 2 \\
& t=\sqrt{\frac{2 s}{g}}
\end{aligned}
$$

