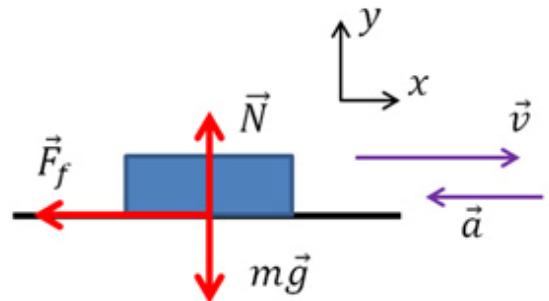


Answer on Question #70798, Physics / Mechanics | Relativity

Question. After a lead-off single in the 8th inning, Earl makes an effort to steal second base. As he hits the dirt on his head first dive, his 73.2 kg body encounters 249 N of friction force. Construct a free body diagram depicting the types of forces acting upon Earl. Then determine the net force and acceleration.

Given.


$$m = 73.2 \text{ kg}; F_f = 249 \text{ N}.$$

Find.

$$F - ?; a_x - ?.$$

Solution.

According to second Newton's law

$$\sum F_x = ma_x \quad \text{and} \quad \sum F_y = ma_y.$$

So

$$-F_f = ma_x \quad \text{and} \quad N - mg = 0 \rightarrow N = mg.$$

We have

$$F = -F_f = -249 \text{ N}.$$

$$a_x = \frac{-F_f}{m} = -\frac{249}{73.2} = -3.4 \frac{m}{s^2}.$$

Answer. $F = 249 \text{ N}$ (against his motion); $a_x = 3.4 \frac{m}{s^2}$ (against his motion).

Answer provided by <https://www.AssignmentExpert.com>