

Answer on Question 70724, Physics, Mechanics, Relativity

Question:

1) A toy car of mass 1 kg moves westwards with a speed of 2 ms^{-1} . It collides head-on with a toy train. The train has a mass of 1.5 kg and is moving at a speed of 1.5 ms^{-1} eastwards. If the car rebounds at 2.05 ms^{-1} , calculate the final velocity of the train.

Solution:

Let's first choose the direction to the east as positive. Then, we can find the final velocity of the train from the Law of Conservation of Momentum:

$$m_1 v_{1i} + m_2 v_{2i} = m_1 v_{1f} + m_2 v_{2f},$$

here, m_1 - is the mass of the toy train; m_2 is the mass of the toy car; v_{1i} , v_{2i} are initial velocities of toy train and car, respectively; v_{1f} , v_{2f} are final velocities of toy train and car, respectively.

Then, we get:

$$m_1 v_{1i} - m_2 v_{2i} = m_1 v_{1f} + m_2 v_{2f},$$

$$\begin{aligned} v_{1f} &= \frac{m_1 v_{1i} - m_2 v_{2i} - m_2 v_{2f}}{m_1} \\ &= \frac{1.5 \text{ kg} \cdot 1.5 \text{ ms}^{-1} - 1 \text{ kg} \cdot 2 \text{ ms}^{-1} - 1 \text{ kg} \cdot 2.05 \text{ ms}^{-1}}{1.5 \text{ kg}} = \\ &= -1.2 \text{ ms}^{-1}. \end{aligned}$$

The sign minus indicates that after the collision the toy train moves to the west.

Answer:

$$v_{1f} = 1.2 \text{ ms}^{-1}, \text{ to the west.}$$

2) Consider the collision of two cars. Car 1 is at rest and Car 2 is moving at a speed of 2 ms^{-1} to the left. Both cars each have a mass of 500 kg . The cars collide and stick together. What is the resulting velocity of the cars?

Solution:

We can find the resulting velocity of the cars from the Law of Conservation of Momentum:

$$m_1 v_{1i} + m_2 v_{2i} = (m_1 + m_2) v_{res},$$

here, m_1, m_2 are the masses of two cars; v_{1i} is the initial velocity of the Car 1(it will be equal to zero, since Car 1 is at rest); v_{2i} is the initial velocity of the Car 2 and v_{res} is the resulting velocity of the cars.

Then, we get:

$$m_2 v_{2i} = (m_1 + m_2) v_{res},$$

$$v_{res} = \frac{m_2 v_{2i}}{m_1 + m_2} = \frac{500 \text{ kg} \cdot 2 \text{ ms}^{-1}}{500 \text{ kg} + 500 \text{ kg}} = 1 \text{ ms}^{-1}.$$

Answer:

$$v_{res} = 1 \text{ ms}^{-1}.$$

Answer provided by <https://www.AssignmentExpert.com>