

Answer on Question #70696, Physics / Mechanics | Relativity

The 0.732x 1.2 m lid ABCD of a storage bin is hinged alongside AB and is held open by looping cord DEC over a frictionless hook at E. If the tension in the cord is 54N, determine the moment about each of the co-ordinate axes of the force exerted by the cord at D.

$$M_x = -30.7 \text{ N.m} \quad M_y = 12.96 \text{ N.m} \quad M_z = -2.38 \text{ N.m.}$$

Solution:

$$z = \sqrt{0.732^2 + 0.132^2} = 0.720 \text{ m}$$

$$d_{DE} = \sqrt{0.360^2 + 0.720^2 + 0.720^2} = 1.08 \text{ m}$$

$$\mathbf{T}_{DE} = \frac{\mathbf{T}_{DE}}{d_{DE}} r_{E/D}$$

Where $r_{E/D}$ is the vector drawn from D to E

$$r_{E/D} = (0.360 \text{ m})\mathbf{i} + (0.720 \text{ m})\mathbf{j} + (0.720 \text{ m})\mathbf{k}$$

$$\mathbf{T}_{DE} = \frac{54 \text{ N}}{1.08 \text{ m}} (0.360 \text{ m})\mathbf{i} + (0.720 \text{ m})\mathbf{j} + (0.720 \text{ m})\mathbf{k}$$

$$\mathbf{T}_{DE} = (18 \text{ N})\mathbf{i} + (36 \text{ N})\mathbf{j} - (36 \text{ N})\mathbf{k}$$

The moment M_A of the force \mathbf{T}_{DE} about A is obtained by forming the vector product

$$M_A = r_{D/A} \times \mathbf{T}_{DE}$$

Where $r_{D/A}$ is the vector drawn from A to D

$$r_{D/A} = (0.132 \text{ m})\mathbf{j} + (0.720 \text{ m})\mathbf{k}$$

The moment M_A can be expressed in the form of a determinant:

$$M_A = \begin{vmatrix} i & j & k \\ 0 & 0.132 & 0.720 \\ 18 & 36 & -36 \end{vmatrix} = -(30.7 \text{ Nm})\mathbf{i} - (12.96 \text{ Nm})\mathbf{j} - (2.38 \text{ Nm})\mathbf{k}$$

Answer: $M_x = -30.7 \text{ Nm}$; $M_y = 12.96 \text{ Nm}$; $M_z = -2.38 \text{ Nm}$.

Answer provided by <https://www.AssignmentExpert.com>