## Answer on Question \#70674, Physics / Mechanics | Relativity |

## Question

A balloon is rising with a constant velocity of $10 \mathrm{~m} / \mathrm{s}$. An object is released freely from that balloon and hits to the ground after 20 seconds. Ignoring the air resistance, find the position of the balloon:
a) at the time of object released;
b) at the time of object hits to the ground.

## Solution

$$
\begin{gathered}
t=20 \mathrm{~s} \\
v=10 \mathrm{~m} / \mathrm{s} \\
\mathrm{H}_{1}-? \mathrm{H}_{2}-?
\end{gathered}
$$

The object (as free-falling object) accelerates downwards at a rate of $9.8 \mathrm{~ms}^{-2} \simeq 10 \mathrm{~ms}^{-2}$ with initial velocity $v_{0}=-10 \mathrm{~m} / \mathrm{s}$,where minus means that the direction of the velocity is upwards.
a) The displacement of the object is

$$
H_{1}=v_{0} t+\frac{g t^{2}}{2}=-10 \cdot 20+\frac{10 \cdot 400}{2}=1800 \mathrm{~m} .
$$

b) While the object is falling the balloon is rising with a constant velocity of $10 \mathrm{~m} / \mathrm{s}$. The position of balloon changes from $H_{1}$ to $H_{2}$ :

$$
H_{2}=H_{1}+v t=1800+10 \cdot 20=2000 \mathrm{~m} .
$$

Answer: $H_{1}=1800 \mathrm{~m} ; H_{2}=2000 \mathrm{~m}$.
Answer provided by https://www.AssignmentExpert.com

