Answer on Question \#70652, Physics / Mechanics | Relativity

Question. If the crown is not pure gold, then how much silver is in it?

Assume that the volume of the crown is $64.8 \mathrm{~cm}^{3}$ and that its mass is 1000 g . We also know that 1000 g of gold has a volume of about $51.8 \mathrm{~cm}^{3}$ and 1000 g of silver has a volume of about $95.2 \mathrm{~cm}^{3}$. If the crown is not pure gold that how much silver is in it?

Given.

$m=1000 \mathrm{~g} ; V=64.8 \mathrm{~cm}^{3} ; \rho_{1}=\frac{1000}{51.8}=19.3 \mathrm{~g} / \mathrm{cm}^{3} ; \rho_{2}=\frac{1000}{95.2}=10.5 \mathrm{~g} / \mathrm{cm}^{3}$.

Find.

$m_{2}-$?

Solution.

The mass of the crown is

$$
m=m_{1}+m_{2},
$$

where m_{1} - the mass of gold in the crown and m_{2} - the mass of silver in the crown. Then

$$
m=\rho_{1} V_{1}+\rho_{2} V_{2},
$$

where V_{1} is the volume of gold in the crown and V_{2} is the volume of silver in the crown.
So

$$
\begin{gathered}
\frac{m}{V}=\rho_{1} \frac{V_{1}}{V}+\rho_{2} \frac{V_{2}}{V}=\rho_{1} \frac{V-V_{2}}{V}+\rho_{2} \frac{V_{2}}{V}=\rho_{1}\left(1-\frac{V_{2}}{V}\right)+\rho_{2} \frac{V_{2}}{V} ; \\
\frac{m}{V}=\rho_{1}-\rho_{1} \frac{V_{2}}{V}+\rho_{2} \frac{V_{2}}{V} \rightarrow \frac{m}{V}=\rho_{1}-\frac{V_{2}}{V}\left(\rho_{1}-\rho_{2}\right) \rightarrow V_{2}=\frac{\rho_{1}-\frac{m}{V}}{\rho_{1}-\rho_{2}} V \rightarrow \rho_{2} V_{2}=\frac{\rho_{1}-\frac{m}{V}}{\rho_{1}-\rho_{2}} V \rho_{2} \rightarrow \\
\\
\rightarrow \boldsymbol{m}_{\mathbf{2}}=\frac{\boldsymbol{\rho}_{\mathbf{1}}-\frac{\boldsymbol{m}}{\boldsymbol{V}}}{\boldsymbol{\rho}_{\mathbf{1}}-\boldsymbol{\rho}_{\mathbf{2}}} \boldsymbol{V} \boldsymbol{\rho}_{\mathbf{2}} .
\end{gathered}
$$

Finally

$$
m_{2}=\frac{\rho_{1}-\frac{m}{V}}{\rho_{1}-\rho_{2}} V \rho_{2}=\frac{19.3-\frac{1000}{64.8}}{19.3-10.5} \cdot 64.8 \cdot 10.5 \approx 300 \mathrm{~g} .
$$

Answer. $\boldsymbol{m}_{\mathbf{2}}=\frac{\boldsymbol{\rho}_{\mathbf{1}}-\frac{m}{V}}{\boldsymbol{\rho}_{\mathbf{1}}-\boldsymbol{\rho}_{\mathbf{2}}} \boldsymbol{V} \boldsymbol{\rho}_{\mathbf{2}}$. For our assumption $m_{2} \approx 300 \mathrm{~g}$.
Answer provided by https://www.AssignmentExpert.com

