Answer on Question 70570, Physics, Other

Question:

A hot air balloon is rising upward with a constant speed of $2.50 \mathrm{~m} / \mathrm{s}$. When the balloon is 3.00 m above the ground, the baloonist accidentally drops a compass over the side of the balloon. How much time elapses before the compass hits the ground?

Solution:

We can find the time before the compass hits the ground from the kinematic equation:

$$
y=y_{0}+v_{0} t+\frac{1}{2} g t^{2}
$$

here, y is the height of the ballon at time $t ; y_{0}=3.0 \mathrm{~m}$ is the height of the ballon when the compass is released; $v_{0}=2.50 \mathrm{~m} / \mathrm{s}$ is the initial velocity of the compass when the compass is released (since we choose upwards as a positive direction, the initial velocity of the compass will be with sign plus); t is the time before the compass hits the ground; $g=-9.8 \mathrm{~m} / \mathrm{s}^{2}$ is the acceleration of gravity (since we choose upwards as a positive direction, the acceleration of gravity will be with sign minus).

Since we want to find the time before the compass hits the ground, $y=0$. Then, we get:

$$
\begin{gathered}
3.0 m+\left(2.5 \frac{m}{s}\right) t-\left(\frac{1}{2} \cdot 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) t^{2}=0 \\
\left(4.9 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) t^{2}-\left(2.5 \frac{\mathrm{~m}}{\mathrm{~s}}\right) t-3.0 \mathrm{~m}=0
\end{gathered}
$$

This quadratic equation has two roots:

$$
\begin{gathered}
t_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-\left(-2.5 \frac{\mathrm{~m}}{\mathrm{~s}}\right) \pm \sqrt{\left(2.5 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}-4 \cdot 4.9 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot(-3.0 \mathrm{~m})}}{2 \cdot 4.9 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}} \\
t_{1}=-0.567 \mathrm{~s}, t_{2}=1.078 \mathrm{~s}
\end{gathered}
$$

Since, time can't be negative, the correct answer is $t=1.078 \mathrm{~s}$.

