Question. Derive the resonance condition for nuclear magnetic resonance. Calculate the require magnetic field strength at which proton spin comes into resonance with 500 MHz radiation.

Given.

 $v_L = 500 \text{ MHz}.$

Find.

 $B_0 - ?.$

Solution.

In a few words (*in more detail see D. Freude Spectroscopy*), the energy of a magnetic moment \vec{p}_m in a magnetic field \vec{B}_0 is given by:

$$E = -\vec{p}_m \cdot \vec{B}_0$$

If the z axis is chosen along \vec{B}_0 then

$$E = -p_{mz}B_0$$

or

$$E = -\gamma m \frac{h}{2\pi} B_0,$$

where γ is the gyromagnetic ratio, m is the magnetic quantum number of the atomic nucleus, h is the Planck constant. For uneven mass numbers $m = \pm \frac{1}{2}$ and we get two levels with an energy difference of

$$\Delta E = \gamma \frac{h}{2\pi} B_0.$$

The energy absorbed by the proton is then $E = hv_L$, where v_L is the resonance radio frequency. Hence, a magnetic resonance absorption will only occur when $\Delta E = hv_L$, which is when

$$v_L = \frac{\gamma}{2\pi} B_0$$

This most important equation of NMR relates the magnetic fields to the resonant frequency. For the proton $\frac{\gamma}{2\pi} = 42.58 \ MHz/T$.

Finally

$$B_0 = \frac{V_L}{2\pi} = \frac{500}{42.58} = 11.74 \, T.$$

Answer: $B_0 = 11.74 T$.

Answer provided by https://www.AssignmentExpert.com