Answer on Question \#70476-Physics-Other

A football quarterback shows off his skill by throwing a pass 45.70 m downfield and into a bucket. The quarterback consistently launches the ball at $38.00 \circ$ above horizontal, and the bucket is placed at the same level from which the ball is thrown.

What initial speed is needed so that the ball lands in the bucket? I got 21.5 m

By how much would the launch speed have to be increased if the bucket is moved to 48.70 m downfield?

Solution

Formula for the range of projectile is

$$
x=\frac{v_{0}^{2} \sin 2 \theta}{g}
$$

The initial speed is

$$
v_{0}=\sqrt{\frac{g x}{\sin 2 \theta}}=\sqrt{\frac{(9.81)(45.7)}{\sin 2(38)}}=21.5 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

New speed is

$$
v_{0}^{\prime}=\sqrt{\frac{g x^{\prime}}{\sin 2 \theta}}=\sqrt{\frac{(9.81)(48.7)}{\sin 2(38)}}=22.2 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

The increase in speed is

$$
v_{0}^{\prime}-v_{0}=22.2-21.5=0.7 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Answer provided by https://www.AssignmentExpert.com

