Answer on Question 70436, Physics, Other

Question:

A student drops a ball from the top of a tall building. The ball takes $2.8 s$ to reach the ground.
(a) What was the ball's speed just before hitting the ground?
(b) What is the height of the building?

Solution:

(a) We can find the ball's speed just before hitting the ground from the kinematic equation:

$$
v=v_{0}+g t,
$$

here, v is the ball's speed just before hitting the ground, v_{0} is the intial velocity of the ball (since initially the ball starts falling from rest it will be equal to zero), $g=$ $9.8 \mathrm{~m} / \mathrm{s}^{2}$ is the acceleration due to gravity (we take the downwards as the positive direction, so the acceleration due to gravity will be with sign plus) and t is the time that needs the ball to reach the ground.

Then, we get:

$$
v=g t=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot 2.8 \mathrm{~s}=27.44 \frac{\mathrm{~m}}{\mathrm{~s}} .
$$

(b) We can find the height of the building from another kinematic equation:

$$
\begin{gathered}
h=v_{0} t+\frac{1}{2} g t^{2}, \\
h=\frac{1}{2} g t^{2}=\frac{1}{2} \cdot 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot(2.8 \mathrm{~s})^{2}=38.42 \mathrm{~m} .
\end{gathered}
$$

Answer:

(a) $v=27.44 \frac{\mathrm{~m}}{\mathrm{~s}}$.
(b) $h=38.42 \mathrm{~m}$.

