

Answer on Question #70423, Physics / Mechanics | Relativity

How to calculate the angle made by the projected particle from the ground where it lands?

Solution:

Basic equations describing the motion of a body cast at an angle to the horizon:

$$x = v_0 \cdot \cos \alpha_0 \cdot t$$

$$y = v_0 \cdot \sin \alpha_0 \cdot t - \frac{g \cdot t^2}{2}$$

We find the angle of the direction of the speed of flight of the body α_i at the point of the trajectory of interest to us. To do this, we write the initial pair of equations in the following form:

$$y = x \cdot \operatorname{tg} \alpha_0 - \frac{g \cdot x^2}{2 \cdot v_0^2 \cdot (\cos \alpha_0)^2}$$

This equation of the parabola is the flight trajectory.

We need to find the angle of inclination of the tangent to the parabola at the point of interest to us - this will be the angle α_i . To do this, we take the derivative, which is the tangent of the angle of inclination of the tangent:

$$y' = \operatorname{tg} \alpha_0 - \frac{g \cdot x}{v_0^2 \cdot (\cos \alpha_0)^2}$$

We find the angle of incidence

$$\alpha_i = \operatorname{arctg} y' = \operatorname{arctg} \left(\operatorname{tg} \alpha_0 - \frac{g \cdot x}{v_0^2 \cdot (\cos \alpha_0)^2} \right)$$

Answer: $\alpha_i = \operatorname{arctg} y' = \operatorname{arctg} \left(\operatorname{tg} \alpha_0 - \frac{g \cdot x}{v_0^2 \cdot (\cos \alpha_0)^2} \right)$

Answer provided by <https://www.AssignmentExpert.com>