Answer on Question \#70329, Physics / Other

A jet touches down on a runway with a speed of 142.4 mph . after 12.4 s , the jet comes to a complete stop. Assuming constant acceleration of the jet. How far down the runway from where it touched down does the jet stand?

SOLUTION

Uniform acceleration is a type of motion in which the velocity of an object changes by an equal amount in every equal time period. There are simple formulas elating the displacement, initial and time-dependent velocities, and acceleration to the time elapsed:

$$
\begin{align*}
& \vec{v}(t)=\overrightarrow{v_{0}}+\vec{a} t, \\
& v^{2}(t)=v_{0}^{2}(t)+2 \vec{a}\left(\vec{s}(t)-\overrightarrow{s_{0}}\right) \tag{2}
\end{align*}
$$

where t is the elapsed time,
$\overrightarrow{s_{0}}$ is the initial displacement from the origin, $\vec{s}(t)$ is the displacement from the origin at time t,
$\overrightarrow{v_{0}}$ is the initial velocity, and \vec{a} is the uniform rate of acceleration.

Let us present a picture to imagine the task.

Fig. 1. Jet lending

A jet touches down on a runway with a speed of $\mathrm{v}_{0}=142.4 \mathrm{mph}=(142.4 / 3600) \mathrm{mile} / \mathrm{s} \approx 0.04$ mile/s. Let us suppose that it is a time $t=0$, and the touch point has a displacement $s_{0}=0$. After $t_{\text {end }}=12.4 \mathrm{~s}$, the jet comes to a complete stop: $v_{\text {end }}=0$. Assuming constant acceleration of the jet, from the formula (1) we can find acceleration:
$\vec{a}=\frac{\vec{v}\left(t_{\text {end }}\right)-\overrightarrow{v_{0}}}{t_{\text {end }}}$, (3)
$a=\frac{\left(0-0.04 \frac{\text { mile }}{\mathrm{s}}\right)}{12.4 \mathrm{~s}}=-0.0032 \frac{\mathrm{mile}}{\mathrm{s}^{2}}$.
Appearing the minus means that acceleration decreases velocity. Extracting the displacement from the formula (2), we obtain a result:
$s-s_{0}=\frac{v_{e n d}^{2}-v_{0}^{2}}{2 a}=-\frac{\left(0.04 \frac{\text { mile }}{\mathrm{s}}\right)^{2}}{2\left(-0.0032 \frac{\text { mile }}{\mathrm{s}^{2}}\right)}=0.25 \mathrm{mile}$.
ANSWER: the jet stands 0.25 mile from the touched down point.
Answer provided by https://www.AssignmentExpert.com

