Answer on Question \# 70328-Physics - Mechanics | Relativity

Question

A centrifuge has radius of 50 Cm and is operated at $500 \mathrm{r} / \mathrm{min}$. Determine the ratio of radial acceleration to gravitational acceleration

Solution

The magnitude of the radial (centripetal) acceleration a_{c} in uniform circular motion is

$$
\begin{equation*}
a_{c}=r \omega^{2} \tag{1}
\end{equation*}
$$

which is the acceleration of an object in a circle of radius r revolved at an angular velocity ω. A centrifuge is operated at $500 \mathrm{r} / \mathrm{min}$. The term $\mathrm{r} / \mathrm{min}$ stands for revolutions per minute. By converting this to radians per second, we obtain the angular velocity ω

$$
\omega=500 \frac{r}{\min } \times \frac{2 \pi \mathrm{rad}}{1 \mathrm{rev}} \times \frac{1 \mathrm{~min}}{60.0 \mathrm{~s}}=52.36 \mathrm{rad} / \mathrm{s}
$$

Converting $r=50 \mathrm{~cm}$ to meters and substituting known values into (1) gives

$$
a_{c}=(0.5 \mathrm{~m}) \cdot(52.36 \mathrm{rad} / \mathrm{s})^{2}=1370.8 \mathrm{~m} / \mathrm{s}^{2}
$$

Note that the unitless radians are discarded in order to get the correct units for radial acceleration. Taking the ratio of a_{c} to $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$ which is the gravitational acceleration, yields

$$
\frac{a_{c}}{g}=\frac{1370.8}{9.8}=140
$$

Answer: the ratio of radial acceleration to gravitational acceleration is 140.
Answer provided by https://www.AssignmentExpert.com

