Answer on Question \#70291, Physics / Mechanics | Relativity

A particle with initial velocity $v=-2 i+4 j$ in meters per second at $t=0$ undergoes a constant acceleration (vector a) of magnitude $a=3$ meter per square second at an angle of 130 degrees from the positive direction of the x axis. What is the particle's velocity (vector v) at $t=5 \mathrm{~s}$, in unit vector notation and as a magnitude and an angle?

SOLUTION

Uniform acceleration is a type of motion in which the velocity of an object changes by an equal amount in every equal time period. There is a simple formula relating the time-dependent velocity to the time elapsed:

$$
\vec{v}(t)=\overrightarrow{v_{0}}+\vec{a} t,(1)
$$

where t is the elapsed time, $\overrightarrow{v_{0}}$ is the initial velocity, and \vec{a} is the uniform rate of acceleration.

The unit vectors in the direction of the x and y axes of a two dimensional Cartesian coordinate system are i and j . In our case $\overrightarrow{v_{0}}=-2 \mathrm{i}+4 \mathrm{j}$. Let us assume that the values are written in SI . The vector of acceleration has a magnitude of $|\vec{a}|=3$, but the vector is turned at an angle of 130° from the positive direction of the x axis. Thus its projections to the x and y axes are $a_{x}=|\vec{a}| \cos 130^{\circ}=$ $3 \cos 130^{\circ}, a_{y}=|\vec{a}| \sin 130^{\circ}=3 \sin 130^{\circ}$, besides, velocity's projections are $v_{x}=-2, v_{y}=4$ (see Fig. 1).

Fig. 1. Vectors of acceleration (a) and initial velocity (v)

Equation (1) can be rewritten in a projection representation:

$$
\begin{aligned}
& v_{x}(t)=v_{0 x}+a_{x} t \\
& v_{y}(t)=v_{0 y}+a_{y} t
\end{aligned}
$$

All necessary values are known, we have to find the projections of velocity at $t=5$:

$$
\begin{gathered}
v_{x}(t)=-2+3 \cos 130^{\circ} \cdot 5 \approx-11.642 \\
v_{y}(t)=4+3 \sin 130^{\circ} \cdot 5 \approx 15.491
\end{gathered}
$$

Therefore, $\vec{v}=v_{x} i+v_{y} j=-11.642 i+15.491 j$ (in unit vectors notation) (see Fig. 2). Its magnitude and angle from the positive direction of x axis can be determined as:

$$
\begin{gathered}
|\vec{v}|=\sqrt{v_{x}^{2}+v_{y}^{2}}=\sqrt{11.642^{2}+15.491^{2}}=19.378 \\
\alpha=\operatorname{atan} \frac{v_{y}}{v_{x}}=\operatorname{atan} \frac{15.491}{-11.642}=126.926^{\circ}
\end{gathered}
$$

Fig. 2. Velocity's vector at $\mathrm{t}=5 \mathrm{~s}$

ANSWER: the particle's velocity (vector v) at $\mathrm{t}=5 \mathrm{~s}$ is $\vec{v}=-11.642 i+15.491 j$ in meters per second in unit vector notation. A magnitude is $19.378 \mathrm{~m} / \mathrm{s}$ and it is directed at the angle of 126.926° from the positive direction of the x axis.

Answer provided by https://www.AssignmentExpert.com

