

Answer on Question #70263-Physics-Other

Initially, a swift-moving hawk is moving due west (in the $-x$ -direction) with a speed of 50 m/s; 5.0 s later it is moving due north (in the $+y$ direction) with a speed of 25 m/s. (A) What are the magnitude and direction of Δv_{av} vector during this 5 s interval? and (B) What are the magnitude and direction of vector a_{av} during this 5 s interval?

Solution

(A)

$$\mathbf{v}_i = (-50, 0) \frac{m}{s}$$

$$\mathbf{v}_f = (0, 25) \frac{m}{s}$$

$$\Delta \mathbf{v}_{av} = \mathbf{v}_f - \mathbf{v}_i = (50, 25) \frac{m}{s}$$

The magnitude is

$$\Delta v_{av} = \sqrt{25^2 + 50^2} = 56 \frac{m}{s}$$

The direction is

$$\theta = \tan^{-1} \frac{25}{50} = 27^\circ \text{ from positive } x \text{ axis.}$$

(B)

$$\mathbf{a}_{av} = \frac{\Delta \mathbf{v}_{av}}{t} = \left(\frac{50}{5}, \frac{25}{5} \right) = (10, 5) \frac{m}{s^2}$$

The magnitude is

$$a_{av} = \sqrt{5^2 + 10^2} = 11 \frac{m}{s^2}$$

The direction is

$$\theta = \tan^{-1} \frac{5}{10} = 27^\circ \text{ from positive } x \text{ axis.}$$

Answer provided by <https://www.AssignmentExpert.com>