Answer on Question 70236, Physics, Other

Question:

What is the kinetic energy of a car weighing 14300 N with a velocity of $82 \mathrm{~km} / \mathrm{h}$?

Solution:

Let's first find the mass of the car from the definition of the weight:

$$
W=m g,
$$

here, W is the weight of the car, m is the mass of the car and g is the acceleration due to gravity.

Then, we get:

$$
m=\frac{W}{g}=\frac{14300 \mathrm{~N}}{9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}=1459 \mathrm{~kg}
$$

Secondly, let's convert km / h to m / s :

$$
v=82 \frac{\mathrm{~km}}{\mathrm{~h}} \cdot \frac{1000 \mathrm{~m}}{1 \mathrm{~km}} \cdot \frac{1 \mathrm{~h}}{3600 \mathrm{~s}}=22.7 \frac{\mathrm{~m}}{\mathrm{~s}} .
$$

Finally, from the definition of the kinetic energy, we can find the kinetic energy of a car:

$$
K E=\frac{1}{2} m v^{2}=\frac{1}{2} \cdot 1459 \mathrm{~kg} \cdot\left(22.7 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}=375904 \mathrm{~J}=3.76 \cdot 10^{5} \mathrm{~J} .
$$

Answer:
$K E=3.76 \cdot 10^{5} \mathrm{~J}$.

