## Answer on Question \#70231-Physics-Other

You and your friend decide to have a snowball fight, he stands away from you at an incline that is angled at $\beta=28.7$ degrees. Assuming you are standing right at the base of the incline and throw a snowball at $\alpha=$ 46.5 degrees above the horizontal at $14.8 \mathrm{~m} / \mathrm{s}$ how far up the incline will it travel?

## Solution

The equations for projectile motion:

$$
\begin{gathered}
x=v t \cos \alpha \\
y=v t \sin \alpha-\frac{g t^{2}}{2} \\
\frac{y}{x}=\tan \beta
\end{gathered}
$$

Thus,

$$
\begin{gathered}
\frac{v t \sin \alpha-\frac{g t^{2}}{2}}{v t \cos \alpha}=\tan \beta \\
\frac{v \sin \alpha-\frac{g t}{2}}{v \cos \alpha}=\tan \beta \\
\frac{g t}{2}=v \sin \alpha-v \cos \alpha \tan \beta
\end{gathered}
$$

The time of flight:

$$
t=\frac{2 v}{g}(\sin \alpha-\cos \alpha \tan \beta)=\frac{2(14.8)}{9.81}(\sin 46.5-\cos 46.5 \tan 28.7)=2.873 s
$$

The total distance it travel up the incline is

$$
l=\frac{x}{\cos \alpha}=\frac{v t \cos \alpha}{\cos \beta}=\frac{(14.8)(2.873) \cos 46.5}{\cos 28.7}=37.9 \mathrm{~m}
$$

Answer: 37.9 m.
Answer provided by https://www.AssignmentExpert.com

