Answer on Question \#70226, Physics / Mechanics | Relativity |

Question

Two workers are moving a $20 \mathrm{~kg}, 10 \mathrm{~m}$ scaffolding pole. One stands at the end, the other stands 2.0 m from the other end. Calculate the force exerted by the worker standing at the end in holding the pole.

Solution

$$
\begin{gathered}
M=20 \mathrm{~kg} \\
L=10 m \\
l=2 m \\
g=10 m s^{-2} \\
F_{1}-?
\end{gathered}
$$

The pole is in equilibrum. That is why the two conditions for the equilibrium of a rigid body have to be satisfied.
First condition: the vector sum of forces on the body must be zero.
In our case it means that

$$
\begin{equation*}
F_{1}+F_{2}=M g \tag{1}
\end{equation*}
$$

where F_{1}, F_{2} beinf the forces excerted by the each worker.
Second condition: the vector sum of torques on the body must be zero.
Writing this condition for a center of mass point we have:
$F_{1} \frac{L}{2}=F_{2}\left(\frac{L}{2}-l\right)$,
Solving equations (1) and (2) we find

$$
\begin{equation*}
F_{1}=75 \mathrm{~N} \tag{2}
\end{equation*}
$$

Answer: $F_{1}=75 \mathrm{~N}$
Answer provided by https://www.AssignmentExpert.com

