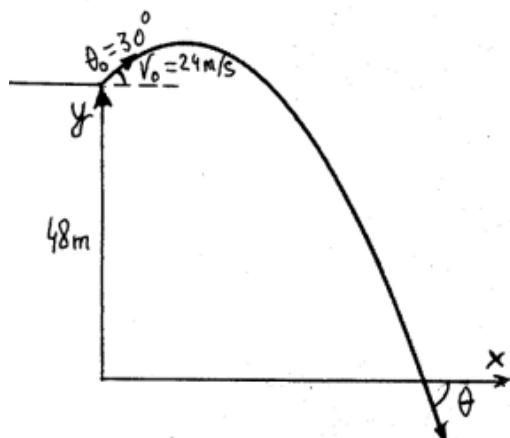


Answer on Question # 69946 - Physics - Mechanics | Relativity


Question

A Spear is thrown upward from a cliff 48m above the ground. Given an initial speed of 24 m/s at an angle of 30 (degrees) to the horizontal"

- how long is the spear in flight?
- what is the magnitude and direction of the spear's velocity just before it hits the ground?

Solution

Resolve the motion of the spear into horizontal and vertical components along the x- and y-axes. These axes are perpendicular, so components of the initial velocity v are $v_{0x} = v_0 \cos\theta_0$ and $v_{0y} = v_0 \sin\theta_0$, where $v_0 = 24 \text{ m/s}$ is the magnitude of the initial velocity and $\theta_0 = 30^\circ$ is its direction, as shown in Figure.

Treat the motion as two independent one-dimensional motions, one horizontal and the other vertical. The kinematic equations for horizontal and vertical motion of the spear take the following forms:

Horizontal motion of the spear ($a_x = 0$)

$$v_x = v_{0x} = 24 \cdot \cos 30^\circ = 24 \cdot \frac{\sqrt{3}}{2} = 12\sqrt{3} \text{ m/s}$$
 velocity is a constant.

Vertical motion of the spear (assuming positive is up $a_y = -g = -9.80 \text{ m/s}^2$ due to gravitation)

$$v_y = v_{0y} - gt$$

$$y = y_0 + v_{0y}t - \frac{1}{2}gt^2$$

$$\text{where } y_0 = 48 \text{ m is the cliff height, } v_{0y} = 24 \cdot \sin 30^\circ = 12 \text{ m/s}$$

First find how long is the spear in flight. When the spear falls to the ground, its y-coordinate will be 0, i.e.

$$y = y_0 + v_{0y}t - \frac{1}{2}gt^2 = 0$$

$$\text{Substitute } y_0 = 48, v_{0y} = 12$$

$$y = 48 + 12 \cdot t - 4.9 \cdot t^2 = 0$$

or

$$4.9t^2 - 12t - 48 = 0$$

Solve this equation

$$t = \frac{12 \pm \sqrt{12^2 - 4 \cdot 4.9 \cdot (-48)}}{2 \cdot 4.9} = \frac{12 \pm \sqrt{144 + 940.8}}{9.8} \approx \frac{12 \pm 32.94}{9.8}$$

$$t_1 = 4.59 \text{ s}$$

$$t_2 = -2.14 \text{ s}$$

Only the positive value of time should be considered so the spear was in flight $t = 4.59 \text{ s}$

Now we find v_y just before the spear hits the ground. Substituting into the formula $v_y = v_{0y} - gt$ values $v_{0y} = 12$, $g = 9.8$ and $t = 4.59$ we get

$$v_y = 12 - 9.8 \cdot 4.59 \approx -33 \text{ m/s}$$

where the minus sign indicates that the velocity is directed downward.

Find the magnitude of the spear's velocity just before it hits the ground

$$v = \sqrt{v_x^2 + v_y^2} = \sqrt{(12\sqrt{3})^2 + (-33)^2} = \sqrt{1521} = 39 \text{ m/s}$$

Find the $\cos\theta$ where θ is an angle of the spear's velocity to the horizontal just before the spear fell to the ground

$$\sin\theta = \frac{v_y}{v} = \frac{-33}{39} = \frac{-11}{13} = -0.85$$

Then we get $\theta = -57.8^\circ$. The negative angle means that the velocity is $\theta = -57.8^\circ$ below the horizontal. This result is consistent with the fact that the final vertical velocity is negative.

Answer: a. The spear was in flight $t = 4.59 \text{ s}$.

b. The magnitude and the angle of the spear's velocity to the horizontal just before it hits the ground are $v = 39 \text{ m/s}$ and $\theta = -57.8^\circ$.

Answer provided by <https://www.AssignmentExpert.com>