Answer on Question 69890, Physics, Mechanics, Relativity

Question:

If a car with a velocity of $2.0 \mathrm{~m} / \mathrm{s}$ at $t=0 \mathrm{~s}$ accelerates at a rate of $4.0 \mathrm{~m} / \mathrm{s}^{2}$ for 2.5 s , what is its velocity at $t=2.5 \mathrm{~s}$?

Solution:

We can find the car velocity at $t=2.5 \mathrm{~s}$ from the kinematic equation:

$$
v=v_{0}+a t
$$

here, $v_{0}=2.0 \mathrm{~m} / \mathrm{s}$ is the initial velocity of the car at $t=0 \mathrm{~s}, a=4.0 \mathrm{~m} / \mathrm{s}^{2}$ is the acceleration of the car, t is the time.

Then, we get:

$$
v(t=2.5 \mathrm{~s})=2.0 \frac{\mathrm{~m}}{\mathrm{~s}}+4.0 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot 2.5 \mathrm{~s}=12.0 \frac{\mathrm{~m}}{\mathrm{~s}} .
$$

Answer:

$$
v(t=2.5 \mathrm{~s})=12.0 \frac{\mathrm{~m}}{\mathrm{~s}} .
$$

Answer provided by https://www.AssignmentExpert.com

