Answer on Question \#69881-Physics-Other

A trolley is moving horizontally with a speed of $\mathrm{v} \mathrm{m} / \mathrm{sec}$ w.r.t. ground. A man starts running from one end of a trolley with a speed of $2.5 \mathrm{~m} / \mathrm{sec}$ w.r.t the trolley. After reaching the opposite end, the man turns back and continues running with a speed of $1.5 \mathrm{~m} / \mathrm{sec}$ w.r.t. trolley in the backward direction. If the length of the trolley is L then find the maximum value of displacement of the man with respect to ground attained during whole motion.

Solution

From the conservation of energy:

$$
\frac{m v_{i}^{2}}{2}=\frac{m v_{f}^{2}}{2}+m g h
$$

The maximum value of displacement of the man with respect to ground attained during whole motion is

$$
h=\frac{\left(v_{i}^{2}-v_{f}^{2}\right)}{2 g}=\frac{\left(2.5^{2}-1.5^{2}\right)}{2(9.8)}=0.20 \mathrm{~m}=20 \mathrm{~cm}
$$

Answer: 20 cm.

Answer provided by https://www.AssignmentExpert.com

