Question \#69873, Physics / Mechanics | Relativity

State impulse momentum theorem. A batsman hits a cricket ball of mass 120 g with a speed of $40 \mathrm{~ms}-1$. The fielder stops the ball and the ball comes to rest in his hands in 10-3s. Calculate the average force exerted by the fielder's hands on the ball. Using the work-energy theorem, calculate the work done on the ball by this average force.

Solution:

Impulse momentum theorem: An impulse delivered to an object causes the object's momentum to change as follows: $F \Delta t=\Delta p=m v_{\text {final }}-m v_{\text {initial }}$

$$
\begin{gathered}
F=\frac{m v_{\text {final }}-m v_{\text {initial }}}{\Delta t}=0.12 \mathrm{~kg} * \frac{(40-0) \frac{m}{s}}{10^{-3} s}=4800 \mathrm{~N} \\
A=\Delta E=\frac{m v_{\text {final }}^{2}}{2}=0.12 \mathrm{~kg} * \frac{40^{2}}{2} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}}=96 \mathrm{~J}
\end{gathered}
$$

Answer: Average force: 4800N
Work done: 96J
Answer provided by https://www.AssignmentExpert.com

