69866, Physics / Electromagnetism

Question Two charges lie in a line along the x axis. Charge 1 is $\mathrm{q} 1=1.1 \mathrm{C}$ and charge 2 is $\mathrm{q} 2=2.5 \mathrm{C}$. They are each a distance of $\mathrm{d}=0.061 \mathrm{~m}$ from the origin. What is the distance on the x -axis from the origin at which the electric field will be zero. Give your answer in meters.

Solution The electric field is sum of fields from both charges

$$
E=E_{1}+E_{2}=k \frac{q_{1}}{r_{1}^{2}}-k \frac{q_{2}}{r_{2}^{2}}=0
$$

The signs of E_{1} and E_{2} are different as they are on different sides of point, where there is no field. Let us suppose it is at distance x from origin. Then

$$
\begin{aligned}
k \frac{q_{1}}{r_{1}^{2}} & =k \frac{q_{2}}{r_{2}^{2}} \\
\frac{q_{1}}{(r-x)^{2}} & =\frac{q_{2}}{(r+x)^{2}}
\end{aligned}
$$

where $r=0.061$. Then we can find x :

$$
\begin{gathered}
q_{2}\left(r^{2}-2 x r+x^{2}\right)=q_{1}\left(r^{2}+2 x r+x^{2}\right) \\
x^{2}\left(q_{2}-q_{1}\right)-2 r x\left(q_{2}+q_{1}\right)+r^{2}\left(q_{2}-q_{1}\right)=0 \\
1.4 x^{2}-2 \cdot 3.6 \cdot 0.061 x+0.061^{2} \cdot 1.4=0
\end{gathered}
$$

Solving this quadratic equation we find that suiting solution is

$$
x=0.01237
$$

