

Answer on Question #69860-Physics-Classical Mechanics

A particle moves over the sides of an equilateral triangle of side l with constant speed v . The magnitude of average velocity and average acceleration as it moves from a to c.

Solution

The magnitude of average velocity is

$$V = \frac{d}{t} = \frac{l}{t}$$

$$t = \frac{2l}{v}$$

$$V = \frac{l}{\frac{2l}{v}} = \frac{v}{2}$$

The magnitude of average acceleration as it moves from a to c is

$$a = \frac{|\bar{v}_f - \bar{v}_i|}{t}$$

$$\bar{v}_f = (v \cos 60, -v \sin 60)$$

$$\bar{v}_i = (v \cos 60, v \sin 60)$$

$$\bar{v}_f - \bar{v}_i = (0, -2v \sin 60)$$

$$|\bar{v}_f - \bar{v}_i| = 2v \sin 60 = \frac{2v\sqrt{3}}{2} = v\sqrt{3}.$$

Thus,

$$a = \frac{v\sqrt{3}}{\frac{2l}{v}} = \frac{\sqrt{3}v^2}{2l}$$

Answer provided by <https://www.AssignmentExpert.com>