Answer on Question 69769, Physics, Other

Question:

A projectile is launched at an angle of 30° and a speed of $30 \mathrm{~m} / \mathrm{s}$. How long did it spend in the air?

Solution:

We can find the time of flight of the projectile from the equation of motion:

$$
y=v_{0} t \sin \theta-\frac{1}{2} g t^{2}
$$

here, v_{0} is the initial speed of the projectile, θ is the launch angle, g is the acceleration due to gravity, y is the height of the projectile above the ground and t is the time of flight of the projectile.

Since the projectile returns to the horizontal axis (after flight it falls to the ground), $y=$ 0 , and we get:

$$
\begin{gathered}
v_{0} t \sin \theta-\frac{1}{2} g t^{2}=0, \\
v_{0} t \sin \theta=\frac{1}{2} g t^{2}, \\
t=\frac{2 v_{0} \sin \theta}{g}=\frac{2 \cdot 30 \frac{\mathrm{~m}}{\mathrm{~s}} \cdot \sin 30^{\circ}}{9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}=3.06 \mathrm{~s} .
\end{gathered}
$$

Answer:

$t=3.06 \mathrm{~s}$.

