

Answer on Question 69734, Physics, Other

Question:

A bottle lying on the windowsill falls off and takes 4.95 s to reach the ground. The distance from the windowsill to the ground is 120.0 m . Find the time the bottle would take to land if it were to fall the same distance on the Moon instead of the Earth. (Note: Acceleration due to gravity on the Moon is $1/6$ that on the Earth.)

Solution:

We can find the time the bottle would take to land if it were to fall the same distance on the Moon instead of the Earth from the kinematic equation:

$$d = v_0 t + \frac{1}{2} g_{\text{Moon}} t^2,$$

here, d is the distance that the bottle falls from the windowsill to the ground, $v_0 = 0$ is the initial velocity of the bottle, $g_{\text{Moon}} = (1/6) \cdot g_{\text{Earth}}$ is the acceleration due to gravity on the Moon, $g_{\text{Earth}} = 9.8\text{ m/s}^2$ is the acceleration due to gravity on the Earth and t is the time the bottle needs to land on the Moon.

Then, from this equation we can find t :

$$t = \sqrt{\frac{2d}{g_{\text{Moon}}}} = \sqrt{\frac{12d}{g_{\text{Earth}}}} = \sqrt{\frac{12 \cdot 120\text{ m}}{9.8 \frac{\text{m}}{\text{s}^2}}} = 12.12\text{ s.}$$

Answer:

$$t = 12.12\text{ s.}$$

Answer provided by <https://www.AssignmentExpert.com>