Answer on Question \#69702, Physics / Astronomy | Astrophysics

Ques. Derive the expression for the mean temperature in a star: $<T>M^{\wedge} 2 / 3<P>\wedge 1 / 3$

Answer:

Internal energy $\mathrm{E}_{\mathrm{i}}=-\mathrm{E}_{\mathrm{g}} / 2$
C E_{g} is Gravitational Energy.
$\mathrm{dP} / \mathrm{dm}=-\mathrm{Gm} /\left(4 \pi \mathrm{r}^{4}\right)$
Where P is the pressure, m is the mass enclosed in the spherical surface of radius r.
Gravitational Energy of the star
$E_{g}=-G M^{2} / R$
Where, $\mathrm{M}=$ mass of the star and $\mathrm{R}=$ radius of the star
Let,
$\rho=M /\left[4 \pi R^{3} / 3\right]$
$R=[3 M /(4 \pi \rho)]^{\wedge} 1 / 3$
Internal Energy
$\mathrm{E}_{\mathrm{i}}=1 / 2 * \mathrm{G} \mathrm{M}^{2} *[3 \mathrm{M} /(4 \pi \rho)]^{\wedge}-1 / 3=1 / 2 * G \mathrm{M}^{\wedge}(5 / 3) \rho^{\wedge}(1 / 3) *(3 / 4 \pi)^{\wedge} 1 / 3$
Internal Energy (of a mono-atomic ideal gas or gas in the form of ions)
$\mathrm{E}_{\mathrm{i}}=3 / 2 \mathrm{kTN}=3 / 2 \mathrm{kT}\left[\mathrm{M} / \mu \mathrm{m}_{\mathrm{H}}\right]$
Where, $\mathrm{k}=$ Boltzmann's constant, $\mathrm{T}=$ average temperature of the star, $\mathrm{N}=$ number of molecules/particles of gas, $M=$ mass of the gas, $m_{H}=$ mass of the particle of gas basically N is proportional to the mass M of star
We get:
$E_{i}=M^{\wedge}(5 / 3) * \rho^{\wedge}(1 / 3)=T * M$
$\mathrm{T}=\mathrm{M}^{\wedge}(2 / 3) * \rho^{\wedge}(1 / 3)$

