Answer on Question \#\#69471 -Physics / Other

A car moves with a speed of $v_{1}=40 \mathrm{~km} / \mathrm{h}$ can be stopped by applying brakes in $S_{1}=4 \mathrm{~m}$. If the same car is moving with a speed of $v_{2}=80 \mathrm{~km} / \mathrm{h}$, what is the minimum stopping distance assuming that the retardation is constant.

Solution

$$
\begin{gathered}
S=\frac{v_{f}^{2}-v_{i}^{2}}{2 a} \\
v_{f}=0, \quad a<0 \\
S_{1}=\frac{v_{1 i}^{2}}{2 a} ; \\
S_{2}=\frac{v_{2 i}^{2}}{2 a}
\end{gathered}
$$

Thus:

$$
\begin{gathered}
\frac{S_{2}}{S_{1}}=\frac{v_{2 i}^{2}}{v_{1 i}^{2}} \\
S_{2}=\frac{v_{2 i}^{2}}{v_{1 i}^{2}} \times S_{1}=\left(\frac{80}{40}\right)^{2} \times 4=16 \mathrm{~m} .
\end{gathered}
$$

Answers: $S_{2}=16 \mathrm{~m}$.

