

Answer on Question 69413, Physics, Other

Question:

A person of mass 60 kg is standing in a lift. What is his weight when the lift is stationary and when it is moving with an acceleration $g/4$?

Solution:

a) When the lift is stationary, there is no acceleration and we can write the Newton's Second Law of Motion as follows:

$$\sum F_y = ma_y = 0,$$

$$N - mg = 0,$$

$$N = mg = 60 \text{ kg} \cdot 9.8 \frac{\text{m}}{\text{s}^2} = 588 \text{ N}.$$

b) Let's consider the case when the lift moves with an upward acceleration $g/4$. Let's apply the Newton's Second Law of Motion:

$$\sum F_y = ma_y,$$

$$N - mg = ma,$$

$$\begin{aligned} N &= mg + ma = m(g + a) = m\left(g + \frac{g}{4}\right) = m\frac{5}{4}g = 1.25mg = \\ &= 1.25 \cdot 60 \text{ kg} \cdot 9.8 \frac{\text{m}}{\text{s}^2} = 735 \text{ N}. \end{aligned}$$

Answer:

a) $N = 588 \text{ N}$.

b) $N = 735 \text{ N}$.