Answer on Question 69410, Physics, Other

Question:

A force $F=(\vec{\imath}+\vec{\jmath}) N$ is applied on a mass of 1 kg located at $(1,2,1) m$. Find the torque about the origin.

Solution:

By the definition of the torque we get:
$\vec{\imath}=\vec{r} \times \vec{F}=\left|\begin{array}{ccc}\vec{\imath} & \vec{\jmath} & \vec{k} \\ r_{x} & r_{y} & r_{z} \\ F_{x} & F_{y} & F_{z}\end{array}\right|=\left|\begin{array}{ccc}\vec{\imath} & \vec{\jmath} & \vec{k} \\ 1 & 2 & 1 \\ 1 & 1 & 0\end{array}\right|=\vec{\imath} \cdot\left|\begin{array}{cc}2 & 1 \\ 1 & 0\end{array}\right|-\vec{\jmath} \cdot\left|\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right|+\vec{k} \cdot\left|\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right|=$
$(2 \cdot 0-1 \cdot 1) \vec{\imath}-(1 \cdot 0-1 \cdot 1) \vec{\jmath}+(1 \cdot 1-1 \cdot 2) \vec{k}=(-\vec{\imath}+\vec{\jmath}-\vec{k}) N \cdot m$.
Also, we can find the magnitude of the torque from the Pythagorean theorem:

$$
\tau=\sqrt{\tau_{x}^{2}+\tau_{y}^{2}+\tau_{z}^{2}}=\sqrt{(-1 N \cdot m)^{2}+(1 N \cdot m)^{2}+(-1 N \cdot m)^{2}}=1.732 N \cdot m .
$$

Answer:

$\vec{\tau}=(-\vec{\imath}+\vec{\jmath}-\vec{k}) N \cdot m$.
The magnitude of the torque is $\tau=1.732 \mathrm{~N} \cdot \mathrm{~m}$.

Answer provided by AssignmentExpert.com

