Answer on Question \#69409 -Physics / Other

A transverse wave of amplitude $A=2 \mathrm{~cm}$ is generated at $x=0$ and $t=0$ in a long string by a tuning fork of frequency $f=500 \mathrm{~Hz}$. At a particular time, the displacement of the particles at $x=20 \mathrm{~cm}$ and $x=40 \mathrm{~cm}$ are -1.0 cm and 1.0 cm respectively Calculate the wavelength and velocity of the wave. express the displacement in terms of wave velocity, if the wave travels along the positive x direction and $x=0$ signifies the equilibrium position.

Solution

$$
\begin{gathered}
y(x, t)=A \sin (\omega t-k x) \\
\omega=2 \pi f \\
y_{1}\left(x_{1}, t\right)=A \sin \left(\omega t-k x_{1}\right)=-1 \mathrm{~cm} \\
y_{2}\left(x_{2}, t\right)=A \sin \left(\omega t-k x_{2}\right)=1 \mathrm{~cm} \\
\omega t-k x_{1}=\omega t-k x_{2}+\pi \\
k\left(x_{2}-x_{1}\right)=\pi \\
\frac{2 \pi}{\lambda}\left(x_{2}-x_{1}\right)=\pi \\
\lambda=2\left(x_{2}-x_{1}\right)=2(40-20)=40 \mathrm{~cm}
\end{gathered}
$$

The speed of the wave

$$
v=\lambda \cdot f=0.4 \times 500=200 \frac{\mathrm{~m}}{\mathrm{~s}} .
$$

Answers: $\lambda=0.4 \mathrm{~m}, \quad v=200 \frac{\mathrm{~m}}{\mathrm{~s}}$.

