

Answer on Question #69408 -Physics / Other

A stationary observer notes that the spectral line of $\lambda_0 = 4000 \text{ \AA}$ emitted by a moving star is shifted by $\Delta\lambda = 100 \text{ \AA}$ towards the red from its normal position. Calculate the speed of the star along the line of sight. Take the speed of light $c = 3 \times 10^8 \text{ m/s}$.

Solution

The Doppler effect formula

$$\Delta\lambda = \lambda_0 \frac{v}{c}$$

The speed of the star along the line of sight is

$$v = \frac{\Delta\lambda}{\lambda_0} c = \frac{100}{4000} \times 3 \times 10^8 = 7.5 \times 10^6 \frac{\text{m}}{\text{s}}$$

Answers: $v = 7.5 \times 10^6 \frac{\text{m}}{\text{s}}$.

Answer provided by AssignmentExpert.com