## Answer on question \#69400, Physics / Other

Question a runner is running at a steady velocity of $5.6 \mathrm{~m} / \mathrm{s}$. When she 38.1 m away from the finish line she accelerates at a constant rate. If her velocity at the start line was $7.1 \mathrm{~m} / \mathrm{s}$ what was her acceleration as she approaches the line?

Solution Equations for distance and velocity of last 38.1 m are:

$$
\begin{gathered}
s=v_{0} t+a t^{2} / 2 \\
v=v_{0}+a t
\end{gathered}
$$

We know following values:

$$
s=38.1 \mathrm{~m}, \quad v_{0}=5.6 \mathrm{~m} / \mathrm{s}, \quad, v=7.1 \mathrm{~m} / \mathrm{s} .
$$

We can solve this system by eliminating $t$ :

$$
\begin{gathered}
t=\frac{v-v_{0}}{a} \\
s=v_{0} \frac{v-v_{0}}{a}+a\left(\frac{v-v_{0}}{a}\right)^{2} / 2=v_{0} \frac{v-v_{0}}{a}+\frac{\left(v-v_{0}\right)^{2}}{2 a}
\end{gathered}
$$

From this we find acceleration:

$$
a=v_{0} \frac{v-v_{0}}{s}+\frac{\left(v-v_{0}\right)^{2}}{2 s}=0.25 \mathrm{~m} / \mathrm{s}^{2}
$$

