Answer on Question \#69396-Physics / Other

A Cessna aircraft has a liftoff speed of $v=120 \frac{\mathrm{~km}}{\mathrm{hr}}=33.3 \frac{\mathrm{~m}}{\mathrm{~s}}$.
a.) What minimum constant acceleration does the aircraft require if it is to be airborne after a takeoff run of $S=240 \mathrm{~m}$?
b.) How long does to take the aircraft to become airborne?

Solution:

a)

$$
S=\frac{v^{2}-u^{2}}{2 a} .
$$

u - initial velocity, v - final velocity, a - acceleration, S - distance.
So

$$
a=\frac{v^{2}-u^{2}}{2 S}=\frac{33.3^{2}-0^{2}}{2 \times 240}=2.3 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

b)

$$
a=\frac{v-u}{t}, \quad t=\frac{v-u}{a}=\frac{33.3-0}{2.3}=14.4 \mathrm{~s} .
$$

Answer $a=2.3 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} ; \quad \mathrm{t}=14.4 \mathrm{~s}$.
Answer provided by https://www.AssignmentExpert.com

