Answer on Question \#69377-Physics / Mechanics | Relativity

A stationary sonar station sends out a sound pulse at $f_{0}=40.000 \mathrm{MHz}$. It receives a pulse back from an object directly below it with a time delay of $t=80 \mathrm{~ms}$ at a frequency of 39.958 MHz . Assume the speed of sound in seawater is $c=1.54 \mathrm{~km} / \mathrm{s}$.
(a) Determine the depth of the object.
(b) Determine the vertical speed of the object.

Solution

(a)

$$
\begin{gathered}
2 l=c t \\
l=\frac{c t}{2}=\frac{1540 \times 80 \times 10^{-3}}{2}=61.6 \mathrm{~m} .
\end{gathered}
$$

(b) In terms of a Doppler effect, the change of frequency

$$
\Delta f=f_{0} \frac{v}{c} .
$$

So, the vertical speed of the object is

$$
v=\frac{\Delta f}{f_{0}} c=\frac{40.000-39.958}{40.000} \times 1540=1.617 \frac{\mathrm{~m}}{\mathrm{~s}} .
$$

Answer:

(a) 61.6 m .
(b) $1.617 \frac{\mathrm{~m}}{\mathrm{~s}}$.

Answer provided by https://www.AssignmentExpert.com

