Answer on Question \#69376 - Physics - Mechanics | Relativity

A $10.0-\mathrm{m}$ long wire whose total mass is 39.5 grams is under a tension of 577 N . A pulse is sent down the left end of the wire and 29 ms later a second pulse is sent down the right end of the wire. Where do the pulses first meet?

Solution.

Let us introduce some abbreviations: $L=10.0 \mathrm{~m}, M=39.5 \mathrm{grams}=0.0395 \mathrm{~kg}, \mathrm{~T}=577 \mathrm{~N}$ and $t=29 \mathrm{~ms}=0.029 \mathrm{~s}$.

We can calculate the speed of transverse waves in wire with the following formula:

$$
v=\sqrt{T / \rho}=\sqrt{T L / M} \approx 382.2 \mathrm{~m} / \mathrm{s}
$$

where ρ is the linear mass density of wire.
The first pulse managed to propagate the distance

$$
x=v t \approx 11.08 \mathrm{~m}
$$

So we can see that there are two signals with equal speed moving from the right end of wire to the left end. Because of equal speeds, they meet at a distance $\frac{x-L}{2} \approx 0.54 \mathrm{~m}$ from the left end.

Answer: 0.54 m from the left end.
Answer provided by https://www.AssignmentExpert.com

