Answer on Question 69323, Physics, Other

Question:

2 pipes with different diameters are connected. Inside the pipes is flowing water. The velocity of the water in the larger pipe is $5 \mathrm{~m} / \mathrm{s}$ while the velocity of the water in the smaller pipe is thrice as fast as the larger pipe. The cross-sectional area of the smaller pipe is $0.0625 \mathrm{~cm}^{2}$. Find the radius of the larger pipe.

Solution:

By the definition of the Law of Continuity we have:

$$
A_{1} v_{1}=A_{2} v_{2}
$$

here, A_{1}, A_{2} are the cross-sectional areas of the larger and smaller pipes, respectively, v_{1}, v_{2} are the velocities of the water flowing through the larger and smaller parts of the pipes, respectively.

From this formula we can find the cross-sectional area of the larger pipe:

$$
A_{1}=\frac{A_{2} v_{2}}{v_{1}}
$$

From the other hand:

$$
A_{1}=\pi r_{1}^{2}
$$

Therefore, equating these two formulas, we can find the radius of the larger pipe, r_{1} :

$$
\begin{gathered}
\pi r_{1}^{2}=\frac{A_{2} v_{2}}{v_{1}}, \\
r_{1}=\sqrt{\frac{A_{2} v_{2}}{\pi v_{1}}}=\sqrt{\frac{0.0625 \mathrm{~cm}^{2} \cdot \frac{1 \mathrm{~m}^{2}}{10000 \mathrm{~cm}^{2}} \cdot 15 \frac{\mathrm{~m}}{\mathrm{~s}}}{\pi \cdot 5 \frac{\mathrm{~m}}{\mathrm{~s}}}}=2.4 \cdot 10^{-3} \mathrm{~m} .
\end{gathered}
$$

Answer:

$r_{1}=2.4 \cdot 10^{-3} \mathrm{~m}$.
Answer provided by https://www.AssignmentExpert.com

